AI-Driven Clustering of Social Media Consumption Patterns and Daily Productivity Using K-Means and DBSCAN in Multigenerational Respondents
Keywords:
Daily Productivity, DBSCAN, K-Means Clustering, Unsupervised Learning, Social Media ConsumptionAbstract
Purpose – The rapid development of digital technology has made social media an integral part of life across generations, yet its intensive use raises growing concerns regarding its impact on daily productivity. This study aims to analyze patterns of social media consumption behavior and their relationship with productivity across age groups using a dual clustering approach based on the K-Means and DBSCAN algorithms.
Methods – The study utilizes secondary data from 3,000 multigenerational respondents, processed using Orange Data Mining through stages of data selection, normalization, and unsupervised clustering. K-Means is employed to segment respondents based on proximity to cluster centroids, while DBSCAN is applied to identify density-based behavioral patterns and detect outliers representing extreme digital usage behaviors.
Findings – The results indicate that K-Means effectively maps macro-level clusters primarily differentiated by age, achieving an average Silhouette score of 0.537, which reflects stable and well-separated segmentation. In contrast, DBSCAN demonstrates superior capability in identifying micro-level behavioral patterns, particularly respondents exhibiting extreme characteristics such as excessive screen time and non-productive application usage, despite yielding a lower overall Silhouette value. The comparative analysis highlights that K-Means is more suitable for demographic-based segmentation, whereas DBSCAN provides deeper insights into localized and atypical digital behavior.
Research limitations – The analysis is based on a randomly sampled subset of a publicly available dataset, which may limit the generalisability of the findings across different cultural, occupational, and socioeconomic contexts. Future studies are encouraged to incorporate longitudinal data and additional behavioral variables to capture temporal dynamics and causal relationships between social media usage and productivity.
Originality – This study contributes by systematically comparing centroid-based and density-based clustering approaches within a multigenerational framework to reveal both macro-demographic and micro-behavioral patterns of digital consumption. The proposed dual clustering strategy offers a novel analytical perspective for designing more adaptive and evidence-based digital literacy and productivity enhancement policies.
References
Abdullah, M. N. F., & Suja’i, I. S. (2022). PENGARUH GAYA HIDUP DAN MEDIA SOSIAL TERHADAP PERILAKU KONSUMTIF. Jurnal Pendidikan DEWANTARA: Media Komunikasi, Kreasi Dan Inovasi Ilmiah Pendidikan, 8(2), 72–84. https://doi.org/10.55933/jpd.v8i2.402
Abu-Taieh, E., Alhadid, I., Masa’deh, R., Alkhawaldeh, R. S., Khwaldeh, S., & Alrowwad, A. (2022). Factors Influencing YouTube as a Learning Tool and Its Influence on Academic Achievement in a Bilingual Environment Using Extended Information Adoption Model (IAM) with ML Prediction—Jordan Case Study. Applied Sciences (Switzerland), 12(12). https://doi.org/10.3390/app12125856
Anderson, M., Faverio, M., Park, E., & Nolan, H. (2024). How Teens and Parents Approach Screen Time. www.pewresearch.org
Anisa, S. N., Indrawati, C. D. S., & Subarno, A. (2023). Pengaruh media belajar Youtube dan lingkungan sosial terhadap motivasi belajar siswa generasi Z. JIKAP (Jurnal Informasi Dan Komunikasi Administrasi Perkantoran), 7(3), 190. https://doi.org/10.20961/jikap.v7i3.62651
Awong, L. E. E., & Zielinska, T. (2023). Comparative Analysis of the Clustering Quality in Self-Organizing Maps for Human Posture Classification. Sensors, 23(18). https://doi.org/10.3390/s23187925
Bushra, A. A., & Yi, G. (2021). Comparative Analysis Review of Pioneering DBSCAN and Successive Density-Based Clustering Algorithms. IEEE Access, 9, 87918–87935. https://doi.org/10.1109/ACCESS.2021.3089036
Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. SAGE Publications.
Fani, M. S., Santoso, R., & Suparti. (2021). PENERAPAN TEXT MINING UNTUK MELAKUKAN CLUSTERING DATA TWEET AKUN BLIBLI PADA MEDIA SOSIAL TWITTER MENGGUNAKAN K-MEANS CLUSTERING. 10, 583–593. https://ejournal3.undip.ac.id/index.php/gaussian/
Fitri, M. E., Suryono, R. R., & Wantoro, A. (2023). KLASTERISASI DATA PENJUALAN BERDASARKAN WILAYAH MENGGUNAKAN METODE K-MEANS PADA PT XYZ. 11(2), 2023.
Han, X., Zhou, E., & Liu, D. (2024). Electronic Media Use and Sleep Quality: Updated Systematic Review and Meta-Analysis. In Journal of Medical Internet Research (Vol. 26, Issue 1). JMIR Publications Inc. https://doi.org/10.2196/48356
Hasibuan, M. S., Lubis, A. H., & Sari, M. N. (2024). Perbandingan algoritma clustering dbscan dan k-means dalam pengelompokan siswa terbaik. INFOTECH : Jurnal Informatika & Teknologi, 5(2), 301–309. https://doi.org/10.37373/infotech.v5i2.1457
Ikhsan, E. (2021). Penerapan K-Means Clustering dari Log Data Moodle untuk Menentukan Perilaku Peserta pada Pembelajaran Daring. SISTEMASI: Jurnal Sistem Informasi. http://sistemasi.ftik.unisi.ac.id
Johnkutty, J., Haque, S., & Davis, J. (2024). Exploratory Data Analysis using Machine learning-Behaviour Based Safety. In J. Electrical Systems (Vol. 20, Issue 7).
Kapantaidakis, I., Perakakis, E., Mastorakis, G., & Kopanakis, I. (2025). An Innovative Approach to Topic Clustering for Social Media and Web Data Using AI. Computers, 14(4). https://doi.org/10.3390/computers14040142
Kim, S., Cho, S., Kim, J. Y., & Kim, D. J. (2023). Statistical Assessment on Student Engagement in Asynchronous Online Learning Using the k-Means Clustering Algorithm. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15032049
Kristianto, W. W., & Rudianto, C. (2022). Penerapan Data Mining Pada Penjualan Produk Menggunakan Metode K-Means Clustering (Studi Kasus Toko Sepatu Kakikaki). Jurnal Pendidikan Teknologi Informasi (JUKANTI), 5.
Marsh, E., Vallejos, E. P., & Spence, A. (2024). Mindfully and confidently digital: A mixed methods study on personal resources to mitigate the dark side of digital working. PLoS ONE, 19(2 February). https://doi.org/10.1371/journal.pone.0295631
Montag, C., & Hegelich, S. (2020). Understanding Detrimental Aspects of Social Media Use: Will the Real Culprits Please Stand Up? Frontiers in Sociology, 5. https://doi.org/10.3389/fsoc.2020.599270
Murtaza, S. A., & Molnár, E. (2024). Navigating the digital divide: the impact of social media fatigue on work-life balance. Gradus, 11(1). https://doi.org/10.47833/2024.1.eco.012
Oti, E. U., Olusola, M. O., Eze, F. C., & Enogwe, S. U. (2021). Comprehensive Review of K-Means Clustering Algorithms. International Journal of Advances in Scientific Research and Engineering, 07(08), 64–69. https://doi.org/10.31695/ijasre.2021.34050
Permatasari, I., Hakim, B. P., & Achmad, F. (2025). Pendekatan K-Means Clustering untuk Evaluasi Kinerja Mahasiswa dalam Sistem Project-Based Learning Berdasarkan Motivasi dan Kemampuan Pemecahan Masalah. Technologia : Jurnal Ilmiah, 16(1), 16. https://doi.org/10.31602/tji.v16i1.16896
Pratiwi, D., Hutapea, S., & Mirza, D. F. (2022). The Influence of Capital, social media and Training on the Productivity of MSMEs Fostered Partners of PT. Perkebunan Nusantara III Medan City. International Journal of Social Science and Business, 6, 128–134. https://doi.org/10.23887/ijssb.v6i1
Raihan, F., Studi Sistem Informasi, P., Tinggi Ilmu Komputer Cipta Karya Informatika, S., Jakarta Timur, K., & Khusus Ibukota Jakarta, D. (2024). Analisis Pengaruh Media Sosial X Terhadap Sikap dan Perilaku Remaja Menggunakan K-Means Clustering. Jurnal Indonesia : Manajemen Informatika Dan Komunikasi (JIMIK), 5(3). https://journal.stmiki.ac.id
Ramírez-Correa, P. E., Rondán-Cataluña, F. J., Arenas-Gaitán, J., Grandón, E. E., Alfaro-Pérez, J. L., & Ramírez-Santana, M. (2021). Segmentation of Older Adults in the Acceptance of Social Networking Sites Using Machine Learning. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.705715
Reddy, A. •. (2014). DATA CLUSTERING DATA CLUSTERING Algorithms and Applications Chapman & Hall/CRC Data Mining and Knowledge Discovery Series Chapman & Hall/CRC Data Mining and Knowledge Discovery Series.
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. In Journal of Computational and Applied Mathematics (Vol. 20).
Saputra, A., & Yusuf, R. (2024). Perbandingan Algoritma DBSCAN dan K-MEANS dalam Segmentasi Pelanggan Pengguna Transportasi Publik Transjakarta Menggunakan Metode RFM. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(4), 1346–1361. https://doi.org/10.57152/malcom.v4i4.1516
Saragih, H., & Manurung, J. (2024). Customer segmentation analysis using DBSCAN method in marketing research of retail company.
Schröer, C., Kruse, F., & Gómez, J. M. (2021). A systematic literature review on applying CRISP-DM process model. Procedia Computer Science, 181, 526–534. https://doi.org/10.1016/j.procs.2021.01.199
Social, W. A., & Meltwater. (2024). Digital 2024: Indonesia Report.
Sugiyono, S. (2017). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Alfabeta.
Upshaw, J. D., Stevens, C. E., Ganis, G., & Zabelina, D. L. (2022). The hidden cost of a smartphone: The effects of smartphone notifications on cognitive control from a behavioral and electrophysiological perspective. PLoS ONE, 17(11 November). https://doi.org/10.1371/journal.pone.0277220
Vaghela, R. D., & Iyer, S. S. (2022). A Comparative Analysis of Clustering Algorithm. ECS Transactions, 107(1), 2435–2443. https://doi.org/10.1149/10701.2435ecst
Wiradhany, W., Pócs, A., & Baumgartner, S. E. (2024). Are Social Media Notifications Distracting? The Effects of Social Media Logos and Notification Badges on Visual Working Memory Performance. Experimental Psychology, 71(4), 189–201. https://doi.org/10.1027/1618-3169/a000625
Xia, J., Lin, W., Jiang, G., Wang, Y., Chen, W., & Schreck, T. (2021). Visual Clustering Factors in Scatterplots. IEEE Computer Graphics and Applications, 41, 79–89. https://doi.org/10.1109/MCG.2021.3098804
Yanto, Y., Homaidi, A., & Lutfi, A. (2024). Implementasi Metode Clustering dengan Algoritma DBSCAN Untuk Identifikasi Sentra Industri Berbasis Google Map. G-Tech: Jurnal Teknologi Terapan, 8(3), 2112–2121. https://doi.org/10.33379/gtech.v8i3.4959